Implicit Integration

Bremen

lUjj

- All integration schemes are only conditionally stable
 - I.e.: they are only stable for a specific range for Δt
 - This range depends on the stiffness of the springs
- Goal: unconditionally stability
- One option: implicit Euler integration explicit implicit

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \Delta t \mathbf{v}_{i}^{t} \qquad \mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \Delta t \mathbf{v}_{i}^{t+1}$$
$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \Delta t \frac{1}{m_{i}} \mathbf{f}(\mathbf{x}^{t}) \qquad \mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \Delta t \frac{1}{m_{i}} \mathbf{f}(\mathbf{x}^{t+1})$$

Now we've got a system of non-linear, algebraic equations, with \mathbf{x}^{t+1} and \mathbf{v}^{t+1} as unknowns on both sides \rightarrow implicit integration

Solution Method

• Write the whole spring-mass system with vectors:

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{n} \end{pmatrix} = \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \\ \vdots \\ x_{n3} \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} v_{11} \\ v_{12} \\ v_{13} \\ v_{21} \\ v_{22} \\ \vdots \\ v_{n3} \end{pmatrix} \quad \mathbf{f}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_{1}(\mathbf{x}) \\ \vdots \\ \mathbf{f}_{n}(\mathbf{x}) \end{pmatrix}$$
$$\mathbf{f}_{i}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_{1}(\mathbf{x}) \\ \vdots \\ \mathbf{f}_{n}(\mathbf{x}) \end{pmatrix} \quad \mathbf{f}_{i}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_{i}(\mathbf{x}) \\ \vdots \\ \mathbf{f}_{n}(\mathbf{x}) \end{pmatrix} \quad \mathbf{f}_{i}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_{i}(\mathbf{x}) \\ \vdots \\ \mathbf{f}_{n}(\mathbf{x}) \end{pmatrix}$$
$$\mathbf{f}_{i}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_{i}(\mathbf{x}) \\ \vdots \\ \mathbf{f}_{n}(\mathbf{x}) \end{pmatrix} \quad \mathbf{f}_{i}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_{i}(\mathbf{x}) \\ \vdots \\ \mathbf{f}_{n}(\mathbf{x}) \end{pmatrix} \quad \mathbf{f}_{i}(\mathbf{x}) = \begin{pmatrix} \mathbf{f}_{i}(\mathbf{x}) \\ \vdots \\ \mathbf{f}_{n}(\mathbf{x}) \end{pmatrix}$$

• Write all the implicit equations as one big system of equations :

$$M\mathbf{v}^{t+1} = M\mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^{t+1})$$
(1)

$$\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \, \mathbf{v}^{t+1} \tag{2}$$

Plug (2) into (1) :

$$M\mathbf{v}^{t+1} = M\mathbf{v}^t + \Delta t \,\mathbf{f}(\,\mathbf{x}^t + \Delta t \mathbf{v}^{t+1}\,) \tag{3}$$

• Expand **f** as Taylor series:

$$\mathbf{f}(\mathbf{x}^{t} + \Delta t \, \mathbf{v}^{t+1}) = \mathbf{f}(\mathbf{x}^{t}) + \frac{\partial}{\partial \mathbf{x}} \, \mathbf{f}(\mathbf{x}^{t}) \cdot (\Delta t \, \mathbf{v}^{t+1}) + O((\Delta t \, \mathbf{v}^{t+1})^{2})$$
(4)

• Plug (4) into (3):

$$M \mathbf{v}^{t+1} = M \mathbf{v}^{t} + \Delta t \left(\mathbf{f}(\mathbf{x}^{t}) + \underbrace{\frac{\partial}{\partial x}}_{K} \mathbf{f}(x^{t}) \cdot (\Delta t \mathbf{v}^{t+1}) \right)$$

$$= M \mathbf{v}^{t} + \Delta t \mathbf{f}(\mathbf{x}^{t}) + \Delta t^{2} K \mathbf{v}^{t+1}$$

• *K* is the Jacobi-Matrix, i.e., the derivative of **f** (w.r.t.x):

$$K = \begin{pmatrix} \frac{\partial}{\partial x_{11}} f_{11} & \frac{\partial}{\partial x_{12}} f_{11} & \dots & \frac{\partial}{\partial x_{n3}} f_{11} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{11}} f_{n3} & \dots & \dots & \frac{\partial}{\partial x_{n3}} f_{n3} \end{pmatrix}$$

- K is called the tangent stiffness matrix
 - (The normal stiffness matrix is evaluated at the equilibrium of the system: here the matrix is evaluated at an arbitrary "position" of the system in phase space, hence the name "*tangent* ...")

• Reorder terms :

$$(M - \Delta t^2 K) \mathbf{v}^{t+1} = M \mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^t)$$

• Now, this has the form:

$$A \mathbf{v}^{t+1} = \mathbf{b}$$

mit
$$A \in \mathbb{R}^{3n \times 3n}$$
, $b \in \mathbb{R}^{3n}$

- Solve this system of linear equations with any of the iterative solvers
- Don't use a non-iterative solver, because
 - A changes with every frame (simulation step)
 - We can "warm start" the iterative solver with the solution as of last frame

- First, understand the anatomy of matrix *K* :
 - A spring (*i*, *j*) adds the following four 3x3 block matrices to K :

$$3i \rightarrow \begin{pmatrix} K_{ii} & K_{ij} \\ 3j \rightarrow \begin{pmatrix} K_{ji} & K_{jj} \\ K_{ji} & K_{jj} \\ \uparrow & \uparrow \\ 3i & 3j \end{pmatrix} \qquad i \qquad j$$

- Matrix K_{ij} arises from the derivation of $\mathbf{f}_i = (f_{i1}, f_{i2}, f_{i3})$ w.r.t. $\mathbf{x}_j = (x_{j1}, x_{j2}, x_{j3})$: $K_{ij} = \begin{pmatrix} \frac{\partial}{\partial x_{j1}} f_{i1} & \frac{\partial}{\partial x_{j2}} f_{i1} & \frac{\partial}{\partial x_{j3}} f_{i1} \\ \vdots & \vdots \\ \frac{\partial}{\partial x_{i1}} f_{i3} & \cdots & \frac{\partial}{\partial x_{i3}} f_{i3} \end{pmatrix}$
- In the following, consider only f^s (spring force)

• First of all, compute *K*_{ii}:

$$K_{ii} = \frac{\partial}{\partial \mathbf{x}_i} f_i(\mathbf{x}_i, \mathbf{x}_j)$$

$$= k_s \frac{\partial}{\partial \mathbf{x}_i} \left((\mathbf{x}_j - \mathbf{x}_i) - l_0 \frac{\mathbf{x}_j - \mathbf{x}_i}{\|\mathbf{x}_j - \mathbf{x}_i\|} \right)$$

$$= k_{s} \left(-I - l_{0} \frac{-I \cdot \|\mathbf{x}_{j} - \mathbf{x}_{i}\| - (\mathbf{x}_{j} - \mathbf{x}_{i}) \cdot 2 \frac{(\mathbf{x}_{j} - \mathbf{x}_{i})^{\top}}{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|^{2}} \right)$$

$$= k_{s} \left(-I + l_{0} \frac{1}{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|} I + \frac{2l_{0}}{\|\mathbf{x}_{j} - \mathbf{x}_{i}\|^{3}} (\mathbf{x}_{j} - \mathbf{x}_{i}) (\mathbf{x}_{j} - \mathbf{x}_{i})^{\mathsf{T}} \right)$$

• Zur Erinnerung:

•
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

•
$$\frac{\partial}{\partial \mathbf{x}} \|\mathbf{x}\| = \frac{\partial}{\partial \mathbf{x}} \left(\sqrt{x_1^2 + x_2^2 + x_3^2} \right) = 2 \frac{\mathbf{x}^{\mathsf{T}}}{\|\mathbf{x}\|}$$

Aus einigen Symmetrien folgt:

•
$$K_{ij} = \frac{\partial}{\partial \mathbf{x}_j} f_i(\mathbf{x}_i, \mathbf{x}_j) = -K_{ii}$$

•
$$K_{jj} = \frac{\partial}{\partial x_j} f_j(\mathbf{x}_i, \mathbf{x}_j) = \frac{\partial}{\partial \mathbf{x}_j} (-\mathbf{f}_i(\mathbf{x}_i, \mathbf{x}_j)) = K_{ii}$$

•
$$K_{ji} = K_{ij}$$

Overall Solution Algorithm

- Initialize K = 0
- For each spring (*i*, *j*) compute K_{ii}, K_{ij}, K_{jj}, and accumulate it to K at the right places
- Compute $\mathbf{b} = M \mathbf{v}^t + \Delta t f(\mathbf{x}^t)$
- Solve the linear equation system $A\mathbf{v}^{t+1} = \mathbf{b} \rightarrow \mathbf{v}^{t+1}$
- Compute $\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \, \mathbf{v}^{t+1}$

Advantages and Disadvantages

• **Explicit** integration:

Bremen

W

- + Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step
- Implicit Integration:
 - + Unconditionally stable
 - + Stiff springs work better
 - + Globale solver \rightarrow forces are being propagated throughut the whole pring-mass system with one time step
 - Large stime steps are needed, because one step is much more expensive (if real-time is needed)
 - The integration scheme introduces damping by itself (might be unwanted)

Bremen

- Informal Descripiton:
 - Explicit jumps forward behindly, based on current information
 - Implicit jumps backward and tries to find a future position such that the backwards jump arrives exactly at the current point (in phase space)

http://www.dhteumeuleu.com/dhtml/v-grid.html

G. Zachmann Virtual Reality & Simulation WS December 2012

Mesh Creation for Volumetric Objects

- How to create a mass-spring system for a volumetric model?
- Direct conversion of 3D (surface) geometry into spring-mass system does not yield good results:
 - Geometry has too high a complexity
 - Degenerate polygons

Bremen

- Better (and still simple) idea:
 - Create a tetrahedron mesh out of the geometry (somehow)
 - Each vertex (node) of the tetrahedron mesh becomes a mass point, each edge a spring
 - Distribute the masses of the tetraeder (= density × volume) equally among the mass point

- Generation of the tetrahedron mesh (simple method):
 - Distribute a number of points uniformly (perhaps randomly) in the interior of the geometry (so called "Steiner points")
 - Dito for a sheet/band above the surface
 - Connect the points by Delaunay triangulation (see my "Geometric Data structures" course)

- Anchor the surface meshes within the tetraeder mesh:
 - Represent each vertex of the surface mesh by baryzentric combination of ist surrounding tetraeder mesh

- Bremen
- In addition (optionally):
 - Anchor the outer mass points (of the tetrahedron mesh) at (imaginary) walls
 - Introduce diagonal "struts" (Streben)

- Put all tetrahedra in a 3D grid (use a hash table!)
- In case of a collision in the hash table:
 - Compute exact intersection between the 2 involved tetrahedra

Collision Response

Bremen

W

- Task: objects P and Q (= tetrahedral meshes) collide what is the penalty force?
- Naïve approach:
 - For each mass point of P that has penetrated, compute its closest distance from the surface of Q → force (amount + direction)
- Problem:
 - Implausible forces
 - "Tunneling" (s. a. the chapter on force-feedback)

Ρ

• Examples: inconsistent consistent \mathbf{C}

Consistente Penalty Forces

1. Phase: identify all points of P that penetrate Q

- 2. Phase: determine all edges of P that intersect the surface of Q
 - For each such edge, compute the exact intersection point x_i
 - For each intersection point, compute a normal n_i
 - E.g., by barycentric interpolation of the vertex normals of Q

- 3. Phase: compute the approximate force for border points
 - Border point = a point p that penetrates Q and is incident to an intersecting edge
 - Observation: a border point can be incident to several intersecting edges
 - Set the penetration depth for point p

$$d(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p}) (\mathbf{x}_i - \mathbf{p}) \cdot \mathbf{n}_i}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

where $d(\mathbf{p}) = approx$. penetration depth of mass point \mathbf{p} , $\mathbf{x}_i = point$ of the intersection of an edge incident to \mathbf{p} with surface \mathbf{Q} , $\mathbf{n}_i = normal$ to surface of \mathbf{Q} at point \mathbf{x}_i ,

and
$$\omega(\mathbf{x}_i, \mathbf{p}) = rac{1}{\|\mathbf{x}_i - \mathbf{p}\|}$$

Direction of the penalty force on border points:

$$\mathbf{r}(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p}) \mathbf{n}_i}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

4. Phase: propagate forces by way of breadth-first traversal through the tetrahedron mesh

$$d(\mathbf{p}) = \frac{\sum_{i=1}^{k} \omega(\mathbf{p}_i, \mathbf{p}) ((\mathbf{p}_i - \mathbf{p}) \cdot \mathbf{r}_i + d(\mathbf{p}_i))}{\sum_{i=1}^{k} \omega(\mathbf{x}_i, \mathbf{p})}$$

where \mathbf{p}_i = points of P that have been visited already, \mathbf{p} = point not yet visited, \mathbf{r}_i = direction of the estimated penalty force in point \mathbf{p}_i .

Visualization

Consistent Penetration Depth Estimation for Deformable Collision Response

http://cg.informatik.uni-freiburg.de